
Artificial Intelligence and Automation
Gradient Descent Method

Ph.D. Gerardo Marx Chávez-Campos

Instituto Tecnológico de Morelia: Ing. Mecatrónica



Gradient Descent

Gradient Descent is a very generic optimization algorithm capable of
finding optimal solutions to a wide range of problems. The general
idea of Gradient Descent is to tweak parameters iteratively in order
to minimize a cost function.



Gradient (Grad)

The Gradient of a function f(x, y) in two dimensions is defined as:

∇f(x, y) =
df

dx
î+

df

dy
ĵ (1)

note that its component in the î direction is the partial derivative of
f with respect to x. This is the rate of change of f in the x
direction since y is kept constant.



▶ Measures the local gradient (derivate) of the error function
with regards to the parameter vector θ, and it goes in the
direction of descending gradient.

▶ Once the gradient is zero, you have reached a minimum.
▶ Concretely, you start with θ with random values (this is called

random initialization), and then you improve it gradually,
taking one step at a time, each step attempting to decrease
the cost function (e.g., the MSE), until the algorithm
converges to a minimum.



An important parameter in Gradient Descent is the size of the
steps, determined by the learning rate hyperparameter η. If the
learning rate is too small, then the algorithm will have to go
through many iterations to converge, which will take a long time.



On the other hand, if the learning rate is too high, you might jump
across the valley and end up on the other side, possibly even higher
up than you were before. This might make the algorithm diverge,
with larger and larger values, failing to find a good solution.



Finally, not all cost functions look like nice regular bowls. There
may be holes, ridges, plateaus, and all sorts of irregular terrains,
making convergence to the minimum very difficult.





Batch Gradient Descent

To implement Gradient Descent, you need to compute the gradient
of the cost function with regards to each model parameter θj . In
other words, you need to calculate how much the cost function will
change if you change θj just a little bit.

∂

∂θj
MSE(θ) =

2

m

m∑
i=1

(
θTx(i) − y(i)

)
x
(i)
j (2)



Batch Gradient Descent
Instead of computing these partial derivatives individually, you can
use Equation to compute them all in one go. The gradient vector,
noted ∇θMSE(θ), contains all the partial derivatives of the cost
function (one for each model parameter).

∇θMSE(θ) =



∂
∂θ0

MSE(θ)
∂
∂θ1

MSE(θ)
∂
∂θ2

MSE(θ)
∂
∂θ3

MSE(θ)
...

∂
∂θn

MSE(θ)


=

2

m
XT (Xθ − y) (3)

Notice that this formula involves calculations over the full
training set X, at each Gradient Descent step! it uses the
whole batch of training data at every step (actually, Full
Gradient Descent would probably be a better name).



Special Homework

Homework 25pts for unit 1

Develops the procedure to obtain the matrix/vector form of the
batch gradient descent formula for the MSE(θ) in details.
Take a picture and send it by Teams

∇θMSE(θ) =



∂
∂θ0

MSE(θ)
∂
∂θ1

MSE(θ)
∂
∂θ2

MSE(θ)
∂
∂θ3

MSE(θ)
...

∂
∂θn

MSE(θ)


=

2

m
XT (Xθ − y) (4)



Stochastic Gradient Descent

The main problem with Batch Gradient Descent (BGD) is that it
uses the whole training set to compute the gradients at every step,
making it very slow when the set is large.

At the opposite extreme, Stochastic Gradient Descent (SGD) just
picks a random instance in the training set at every step and
computes the gradients based only on that single instance.

This algorithm is much less regular than BGD. Thus, once the
algorithm stops, the final parameter values are good but not
optimal.





▶ When the cost function is very irregular, this can actually help
the algorithm jump out of local minima. Hence, SGD has a
better chance of finding the global minimum than BGD does.

▶ Therefore, randomness is good to escape from local optima
but bad because it means that the algorithm can never settle
at the minimum.

▶ One solution to this dilemma is to reduce the learning rate
gradually. The steps start out large (which helps make quick
progress and escape local minima), then get smaller and
smaller, allowing the algorithm to settle at the global
minimum.

▶ The function that determines the learning rate at each
iteration is called the learning schedule.



Mini-Batch Gradient Descent

Mini-batch GD computes the gradients on small random sets of
instances called mini-batches. The main advantage of Mini-batch
GD over Stochastic GD is that you can get a performance boost
from hardware optimization of matrix operations when using GPUs.

Mini-batch GD will end up walking around a bit closer to the
minimum than SGD. But, on the other hand, it may be harder for
it to escape from local minima.

They all end up near the minimum, but Batch GD’s path actually
stops at the minimum, while both Stochastic GD and Mini-batch
GD continue to walk around.

However, don’t forget that Batch GD takes a lot of time to take
each step, and Stochastic GD and Mini-batch GD would also reach
the minimum if you use a good learning schedule.





Referencias

Géron, Aurélien. "Hands-on machine learning with scikit-learn
and tensorflow: Concepts." Tools, and Techniques to build
intelligent systems (2017).


	Gradient Descent
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-Batch Gradient Descent
	Referencias

