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Mathematical Formulation

Logistic Regression is a classification algorithm used to predict
binary outcomes (0 or 1). Unlike linear regression, which predicts
continuous values, logistic regression applies a sigmoid function to
model probabilities:

hθ(X) =
1

1 + e−Xθ
(1)

Where:

▶ hθ(X) is the probability of class y = 1 given input X.
▶ θ are the model parameters.
▶ X is the feature vector.



Understanding the Likelihood Function I

In logistic regression, we model the probability that y = 1 given x
as:

P (y = 1|x; θ) = hθ(x) =
1

1 + e−Xθ
(2)

Similarly, the probability that y = 0 is:

P (y = 0|x; θ) = 1− hθ(x) (3)



Understanding the Likelihood Function II

Thus, for a single training example (xi, yi), we can write:

P (yi|xi; θ) = hθ(x
i)y

i
(1− hθ(x

i))(1−yi) (4)

This formula works because:

▶ If yi = 1, then P (yi|xi; θ) = hθ(x
i).

▶ If yi = 0, then P (yi|xi; θ) = 1− hθ(x
i).



Understanding the Likelihood Function III

For the entire dataset {(x(i), y(i))}mi=1, assuming independence of
training examples, the likelihood function (joint probability of all
data points) is:

L(θ) =

m∏
i=1

P (y(i)|x(i); θ) (5)

Expanding this:

L(θ) =

m∏
i=1

hθ(x
i)y

i
(1− hθ(x

i))(1−yi) (6)



Log-Likelihood and Cost Function

Since products can be numerically unstable (due to very small
probabilities), we take the log of the likelihood function to obtain
the log-likelihood:

ℓ(θ) =

m∑
i=1

[
y(i) log hθ(x

(i)) + (1− y(i)) log
(
1− hθ(x

(i))
)]

(7)

MLE aims to maximize the log-likelihood ℓ(θ). Instead of
maximizing it, we minimize the negative log-likelihood, which is
called the cost function:

J(θ) = − 1

m

m∑
i=1

[
y(i) log hθ(x

(i)) + (1− y(i)) log
(
1− hθ(x

(i))
)]
(8)



Gradient Descent

To minimize J(θ), we compute its gradient1:

∂J

∂θj
=

1

m

m∑
i=1

(hθ(x
(i))− y(i))x

(i)
j (9)

Gradient descent update rule:

θj := θj − α
∂J

∂θj
(10)

where α is the learning rate.

1Procedure in another beamer



Compute the Partial Derivative

We differentiate the cost function with respect to θj :

∂J

∂θj
= − 1

m

m∑
i=1

∂

∂θj

[
y(i) log hθ(x

(i)) + (1− y(i)) log
(
1− hθ(x

(i))
)]

(11)



Differentiate the Log Terms

Using the chain rule:

1. Derivative of log hθ(x):

∂

∂θj
log hθ(x

(i)) =
1

hθ(x)
· ∂hθ(x)

∂θj
(12)

2. Derivative of log(1− hθ(x)):

∂

∂θj
log(1− hθ(x)) =

−1

1− hθ(x)
· ∂hθ(x)

∂θj
(13)



Compute the Derivative of Sigmoid Function

The sigmoid function is:

σ(z) = hθ(z) =
1

1 + e−z
(14)

Differentiating hθ(x):

d

dz
σ(z) = hθ(z)(1− hθ(z))

d

dz
z (15)

Thus,
∂hθ(x

(i))

∂θj
= hθ(x

(i))(1− hθ(x
(i)))x

(i)
j (16)



Substitute Back into the Gradient

Now, substituting back:

∂J

∂θj
=

1

m

m∑
i=1

(hθ(x
(i))− y(i))x

(i)
j (17)



Final Gradient Formula

The final gradient formula in vector form is:

∇J(θ) =
1

m
XT (hθ(X)− y) (18)

where:

▶ X is the feature matrix (each row is an input sample).
▶ hθ(X) is the vector of predictions.
▶ y is the vector of true labels.

This formula tells us how to update the parameters:

θ := θ − α∇J(θ) (19)

where α is the learning rate.



Conclusion

▶ We started with the logistic regression cost function.
▶ We computed its derivative using the chain rule and the

sigmoid derivative.
▶ The resulting gradient formula looks similar to linear regression

but applies to logistic regression probabilities.
▶ This formula is used in gradient descent to optimize θ.
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