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Introduction

» Runge-Kutta methods are iterative techniques for solving
Ordinary Differential Equations (ODEs).

» Gradient Descent is an optimization algorithm for minimizing
functions by following the negative gradient.

» Finite Difference Approximations provide numerical methods
for computing derivatives.




Finite Difference Approximations

» Used for numerical differentiation when an explicit derivative is
not available.
» Three main types:
1. Forward Difference:
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2. Central Difference (more accurate):
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Q

@) m B0




Example of Finite Difference Approximation

Function: f(x) = 22

» Compute the derivative at z = 2 with h = 107°:
» Forward Difference:
(2 £109)2 — 22
105

» Central Difference:

(24107°)% — (2—-1075)2
2 x10—°

» Exact Derivative: f'(z) = 2z, so f'(2) = 4.




Runge-Kutta Method (RK4)

Equations:
ki = f(tna yn)
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How Gradient Descent Computes Derivatives

» Gradient Descent minimizes a function by iteratively updating
parameters in the direction of the negative gradient.

» The gradient is computed as:

VJ(H):(aJ 0J 8J>
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» Methods to compute gradients:
1. Analytical differentiation (using calculus).

2. Finite difference approximation:
oJ _J(@+h)—J(O)
00 h
3. Automatic differentiation (used in deep learning framework$
like TensorFlow and PyTorch).




Gradient Descent Update Rule

» Once the gradient V.J(0) is computed, parameters are
updated as:
0:=60—aVJ0)

» Where:

» « is the learning rate.
> V.J(0) is the gradient of the loss function.




Conclusion

» Runge-Kutta methods are widely used for solving ODEs
numerically.

» Gradient Descent is crucial for optimization in machine
learning and deep learning.

» Finite Difference Approximations are useful for numerical
differentiation.

» These numerical methods are applied in physics, engineering,
and artificial intelligence.
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