
Artificial Intelligence and Automation
Runge-Kutta Methods, Gradient Descent, and Finite Difference

Approximations

Ph.D. Gerardo Marx Chávez-Campos

Instituto Tecnológico de Morelia: Ing. Mecatrónica



Introduction

▶ Runge-Kutta methods are iterative techniques for solving
Ordinary Differential Equations (ODEs).

▶ Gradient Descent is an optimization algorithm for minimizing
functions by following the negative gradient.

▶ Finite Difference Approximations provide numerical methods
for computing derivatives.



Finite Difference Approximations

▶ Used for numerical differentiation when an explicit derivative is
not available.

▶ Three main types:
1. Forward Difference:

f ′(x) ≈ f(x+ h)− f(x)

h

2. Central Difference (more accurate):

f ′(x) ≈ f(x+ h)− f(x− h)

2h

3. Backward Difference:

f ′(x) ≈ f(x)− f(x− h)

h



Example of Finite Difference Approximation

Function: f(x) = x2

▶ Compute the derivative at x = 2 with h = 10−5:
▶ Forward Difference:

(2 + 10−5)2 − 22

10−5

▶ Central Difference:

(2 + 10−5)2 − (2− 10−5)2

2× 10−5

▶ Exact Derivative: f ′(x) = 2x, so f ′(2) = 4.



Runge-Kutta Method (RK4)

Equations:

k1 = f(tn, yn)

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
k4 = f(tn + h, yn + hk3)

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)



How Gradient Descent Computes Derivatives

▶ Gradient Descent minimizes a function by iteratively updating
parameters in the direction of the negative gradient.

▶ The gradient is computed as:

∇J(θ) =

(
∂J

∂θ1
,
∂J

∂θ2
, . . . ,

∂J

∂θn

)
▶ Methods to compute gradients:

1. Analytical differentiation (using calculus).
2. Finite difference approximation:

∂J

∂θ
≈ J(θ + h)− J(θ)

h

3. Automatic differentiation (used in deep learning frameworks
like TensorFlow and PyTorch).



Gradient Descent Update Rule

▶ Once the gradient ∇J(θ) is computed, parameters are
updated as:

θ := θ − α∇J(θ)

▶ Where:
▶ α is the learning rate.
▶ ∇J(θ) is the gradient of the loss function.



Conclusion

▶ Runge-Kutta methods are widely used for solving ODEs
numerically.

▶ Gradient Descent is crucial for optimization in machine
learning and deep learning.

▶ Finite Difference Approximations are useful for numerical
differentiation.

▶ These numerical methods are applied in physics, engineering,
and artificial intelligence.



Referencias

Numerical Analysis by Burden & Faires.

Numerical Recipes in C by Press et al.

Deep Learning by Goodfellow, Bengio, and Courville.


	Referencias

