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Introduction

▶ Runge-Kutta methods are iterative techniques for solving
Ordinary Differential Equations (ODEs).

▶ Gradient Descent is an optimization algorithm for minimizing
functions by following the negative gradient.

▶ Finite Difference Approximations provide numerical methods
for computing derivatives.



Finite Difference Approximations

▶ Used for numerical differentiation when an explicit derivative is
not available.

▶ Three main types:
1. Forward Difference:

f ′(x) ≈ f(x+ h)− f(x)

h

2. Central Difference (more accurate):

f ′(x) ≈ f(x+ h)− f(x− h)

2h

3. Backward Difference:

f ′(x) ≈ f(x)− f(x− h)

h



Example of Finite Difference Approximation

Function: f(x) = x2

▶ Compute the derivative at x = 2 with h = 10−5:
▶ Forward Difference:

(2 + 10−5)2 − 22

10−5

▶ Central Difference:

(2 + 10−5)2 − (2− 10−5)2

2× 10−5

▶ Exact Derivative: f ′(x) = 2x, so f ′(2) = 4.



Runge-Kutta Method (RK4)

Equations:
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How Gradient Descent Computes Derivatives

▶ Gradient Descent minimizes a function by iteratively updating
parameters in the direction of the negative gradient.

▶ The gradient is computed as:

∇J(θ) =
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▶ Methods to compute gradients:

1. Analytical differentiation (using calculus).
2. Finite difference approximation:

∂J

∂θ
≈ J(θ + h)− J(θ)

h

3. Automatic differentiation (used in deep learning frameworks
like TensorFlow and PyTorch).



Gradient Descent Update Rule

▶ Once the gradient ∇J(θ) is computed, parameters are
updated as:

θ := θ − α∇J(θ)

▶ Where:
▶ α is the learning rate.
▶ ∇J(θ) is the gradient of the loss function.



Conclusion

▶ Runge-Kutta methods are widely used for solving ODEs
numerically.

▶ Gradient Descent is crucial for optimization in machine
learning and deep learning.

▶ Finite Difference Approximations are useful for numerical
differentiation.

▶ These numerical methods are applied in physics, engineering,
and artificial intelligence.
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