
Artificial Intelligence and Automation
Unit 2: Logistic Regressor

Ph.D. Gerardo Marx Chávez-Campos

Instituto Tecnológico de Morelia: Ing. Mecatrónica

Logistic Regression

As we discussed in Unit 1, some regression algorithms can also be
used for classification (and vice versa). Logistic Regression (also
called Logit Regression) is commonly used to estimate the probability
that an instance belongs to a particular class.

If the estimated probability is greater than 50%, then the model
predicts that the instance belongs to that class (called the positive
class, labeled “1”), or else it predicts that it does not (i.e., it belongs
to the negative class, labeled “0”).

This makes it a binary classifier.

Estimating Probabilities

So how does it work? Just like a Linear Regression (LR) model, a
Logistic Regression model computes a weighted sum of the input
features (plus a bias term). However, instead of outputting the
result directly as the LR model does, it outputs the logistic of this
result:

p̂ = hθ(x) = σ(xTθ) (1)

here σ is the sigmoid function defined as follows:

σ(t) =
1

1 + e−t
(2)

One parameter Logistic Regressor

Two parameters Logistic Regressor

Two parameters Logistic Regressor 3D

Two parameters Logistic Regressor 3D

Once the Logistic Regression model has estimated the probability
p̂ = hθ(x) that an instance x belongs to the positive class, it can
make its prediction ŷ easily:

ŷ =

!
0 if p̂ < 0.5

1 if p̂ ≥ 0.5
(3)

The Cost Function

The objective of the training is to set the parameter vector θ so
that the model estimates high probabilities for positive instances
(y = 1) and low probabilities for negative instances (y = 0).

c(θ) =

!
− log(p̂) if y = 1

− log(1− p̂) if y = 0
(4)

This idea is captured by the cost function for a single training
instance x.

The Cost Function

The cost function over the whole training set is simply the average
cost over all training instances. It can be written in a single
expression (as you can verify easily), called the log loss, shown in
Equation :

J(θ) = − 1

m

m"

i=1

#
y(i) log (p̂(i)) + (1− y(i)) log (1− p̂(i))

$
(5)

Gradient

∂J(θ)

∂θ
=

m"

i=1

1

m

%
σ(θTxi)− yi

&
xij (6)

Referencias

Géron, Aurélien. "Hands-on machine learning with scikit-learn
and tensorflow: Concepts." Tools, and Techniques to build
intelligent systems (2017).

