Artificial Intelligence and Automation A Predicting Machine

Ph.D. Gerardo Marx Chvez-Campos

Instituto Tecnolgico de Morelia: Ing. Mecatrnica

A Basic Predicting Machine I

Let us start by proposing a basic **Machine** that can process information for us. We just input some data, and the machine "thinks" about the correct answer.

Now, let us introduce a specific **Machine** that can convert from Kilometers into Miles. In this example, multiply by a conversion factor θ .

$$\hat{y} = \theta \cdot x$$

A Basic Predicting Machine II

$$\hat{y} = \theta \cdot x \tag{1}$$

here:

- x is the input data in kilometers
- \triangleright θ is the unknown conversion factor, and
- \triangleright \hat{y} is the output converted into Miles

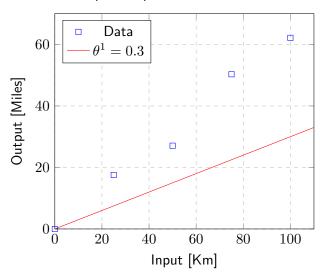
Adjusting the conversion factor I

Now, we have to observe real data to **train** or **adjust** the conversion factor θ . The next data has been collected for some engineers by measuring the relationship between these two parameters:

Instance	Data in	Converted
1	0	0
2	25	15.5492
3	50	30.0684
4	100	62.1371

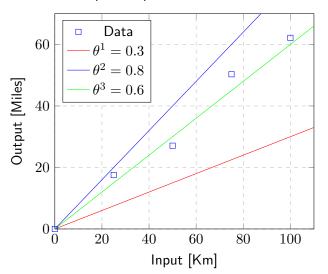
Adjusting the conversion factor II

Dispersion plot from measured data



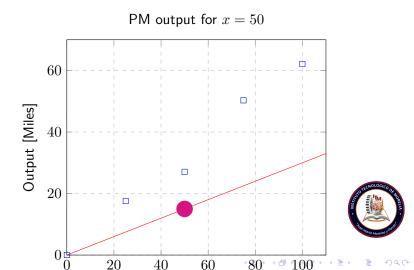
Adjusting the conversion factor III

Dispersion plot from measured data

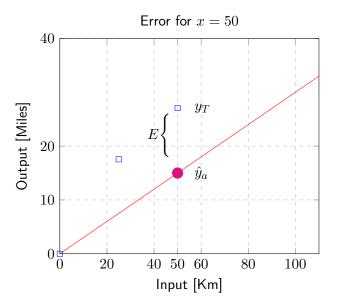


Example of a predicting machine

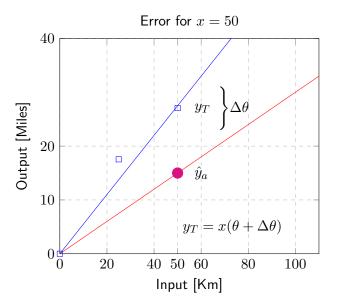
We have observed real data to **train** the conversion factor θ . Now try to understand how to train our **PM** with a first random approach $\theta^1=0.3$:



Example II



Example III



Updating the parameter value I

Now, we can adjust the parameter value to a new one, therefore, a new model well be defined \hat{y} :

$$E = y_T - \hat{y}_a \label{eq:energy}$$
 $E = \mathsf{Desired}$ output — Actual output

Considering that target and actual output are computed with:

$$\hat{y}_a = \theta \cdot x$$
$$y_T = (\theta + \Delta \theta) \cdot x$$

Then, substituting on error formula:

$$E = (\theta + \Delta\theta) \cdot x - \theta \cdot x$$
$$E = \theta \cdot x + \Delta\theta \cdot x - \theta \cdot x$$
$$\Delta\theta = \frac{E}{x}$$

Updating the parameter value II

$$\theta_{New} = \theta_{old} + \Delta\theta \tag{2}$$

with $\theta = 0.3$ and $x^3 = 50$:

$$E = 30.0684 - 15$$

$$E = 15.0684$$

$$\theta_{New} = 0.3 + \frac{15.0684}{50}$$

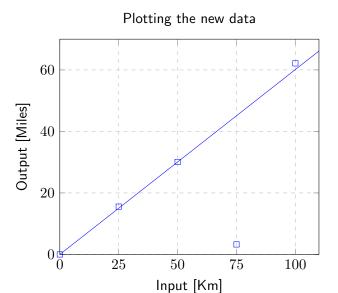
$$\theta_{New} = 0.3 + 0.3013$$

$$\theta_{New} = 0.6013$$

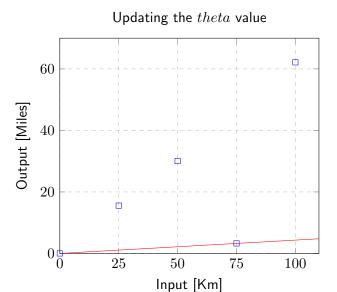
Outliers and learning rate

Instance	Data in	Converted
1	0	0
2	25	15.5492
3	50	30.0684
4	100	62.1371
5	75	3.2548

Example: Outlier



Example: Outlier II



The learning rate

- ▶ We updated the *theta* value considering the new instance
- Now \hat{y} gives the desired output
- However, the other values are forgiven
- ► What is wrong with this method?

Updating for each training data example, all we get is that the final update simply matches the last training example closely. **In effect we are throwing away any learning that previous training examples might gives us** and just learning from the last one.

How can we fix it?

Learning rate

Thus, a way to moderate or update the model parameters, is by just moving a little bit in the new instance direction, but not completely:

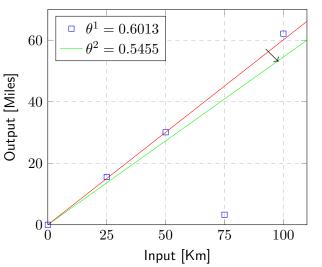
$$\theta_{new} = lr \cdot \Delta\theta + \theta_{old} \tag{3}$$

here lr is knowing as the learning rate, and can help us to obtain a better model that will consider in equality all the instances.

Example: Outlier III

Using a lr = 0.1 the model update results:

Updating the θ value



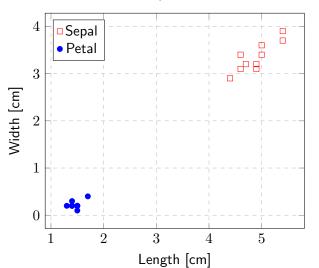
Classifying Machine I

Now, we have to observe real data to **train** or **adjust** the conversion factor c. The next data has been collected for some scientists by measuring the relationship between these two parameters:

Instance	Bug Longth	Bug Width	Class
1	4.9	3.	a
2	4.7	3.2	a
3	4.6	3.1	a
4	5.	3.6	a
5	5.4	3.9	a
6	4.6	3.4	a
7	5.	3.4	a
8	4.4	2.9	a
9	4.9	3.1	a
10	5.4	3.7	a
11	1.4	0.2	b
12	1.3	0.2	b
13	1.5	0.2	b
14	1.4	0.2	b
15	1.7	0.4	b
16	1.4	0.3	b
17	1.5	0.2	b
18	1.4	0.2	b
19	1.5	0.1	b
20	1.5	0.2	_b

Classifying Machine II

Petal and Sepal Measurements



Classifying Machine III

Todo Modify example to make a 45o classifier

Ordinary Least Squares

Instance	Data in	Converted
1	0	0
2	25	15.5492
3	50	30.0684
4	100	62.1371

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \tag{4}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} x_i (y_i - \bar{y})}{\sum_{i=1}^{N} x_i (x_i - \bar{x})}$$
 (5)

$$\hat{\beta}_0 = \bar{y} - \beta_1 \bar{x}$$

Ordinary Least Squares

Instance	Data in	Converted
1	0	0
2	25	15.5492
3	50	30.0684
4	100	62.1371

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} x_i (y_i - \bar{y})}{\sum_{i=1}^{N} x_i (x_i - \bar{x})}$$
(7)

$$\hat{\beta}_1 = \frac{0(0 - 26.93) + 25(15.54 - 26.93) + 50(30.06 - 26.93) + 100(62.13 - 26.93)}{0(0 - 43.75) + 25(25 - 43.75) + 50(50 - 43.75) + 100(100 - 43.75)}$$
(8)

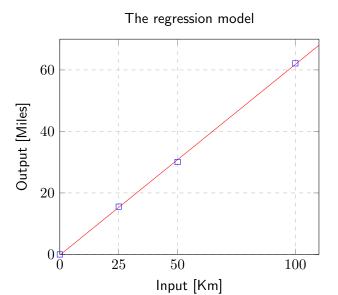
$$\beta_1 = \frac{3391.75}{5468.75} = 0.6202$$

Ordinary Least Squares

$$\beta_1 = \frac{3391.75}{5468.75} = 0.6202 \tag{10}$$

$$\beta_0 = 43.75 - 0.6202(26.93) = -0.2037 \tag{11}$$

Example: OLS III



References

- https://www.mygreatlearning.com/blog/what-is-artificial-intelligence/
- https://www.formica.ai/blog/which-ai-is-learn-by-its-own

