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A Basic Predicting Machine I

Let us start by proposing a basic Machine that can process infor-
mation for us. We just input some data, and the machine “ thinks”
about the correct answer.

Process
input output

Now, let us introduce a specific Machine that can convert from
Kilometers into Miles. In this example, multiply by a conversion
factor θ.

ŷ = θ · x



A Basic Predicting Machine II

ŷ = θ · x (1)

here:

◮ x is the input data in kilometers

◮ θ is the unknown conversion factor, and

◮ ŷ is the output converted into Miles



Adjusting the conversion factor I

Now, we have to observe real data to train or adjust the conversion
factor θ. The next data has been collected for some engineers by
measuring the relationship between these two parameters:

Instance Data in Converted
1 0 0
2 25 15.5492
3 50 30.0684
4 100 62.1371



Adjusting the conversion factor II
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Adjusting the conversion factor III
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Example of a predicting machine

We have observed real data to train the conversion factor θ. Now
try to understand how to train our PM with a first random approach
θ1 = 0.3:
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Example II
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Example III
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Updating the parameter value I
Now, we can adjust the parameter value to a new one, therefore, a
new model well be defined ŷ:

E = yT − ŷa

E = Desired output− Actual output

Considering that target and actual output are computed with:

ŷa = θ · x
yT = (θ +∆θ) · x

Then, substituting on error formula:

E = (θ +∆θ) · x− θ · x
E = θ · x+∆θ · x− θ · x

∆θ =
E

x



Updating the parameter value II

θNew = θold +∆θ (2)

with θ = 0.3 and x3 = 50:

E = 30.0684− 15

E = 15.0684

θNew = 0.3 +
15.0684

50
θNew = 0.3 + 0.3013

θNew = 0.6013



Outliers and learning rate

Instance Data in Converted
1 0 0
2 25 15.5492
3 50 30.0684
4 100 62.1371
5 75 3.2548



Example: Outlier
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Example: Outlier II
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The learning rate

◮ We updated the theta value considering the new instance

◮ Now ŷ gives the desired output

◮ However, the other values are forgiven

◮ What is wrong with this method?

Updating for each training data example, all we get is that the final
update simply matches the last training example closely. In effect
we are throwing away any learning that previous training
examples might gives us and just learning from the last one.

How can we fix it?



Learning rate

Thus, a way to moderate or update the model parameters, is by
just moving a little bit in the new instance direction, but not
completely:

θnew = lr ·∆θ + θold (3)

here lr is knowing as the learning rate, and can help us to obtain a
better model that will consider in equality all the instances.



Example: Outlier III
Using a lr = 0.1 the model update results:

0 25 50 75 100
0

20

40

60
↘

Input [Km]

O
u
tp
u
t
[M

ile
s]

Updating the θ value

θ1 = 0.6013

θ2 = 0.5455



Classifying Machine I

Now, we have to observe real data to train or adjust the conversion
factor c. The next data has been collected for some scientists by
measuring the relationship between these two parameters:

Instance Bug Length Bug Width Class
1 4.9 3. a
2 4.7 3.2 a
3 4.6 3.1 a
4 5. 3.6 a
5 5.4 3.9 a
6 4.6 3.4 a
7 5. 3.4 a
8 4.4 2.9 a
9 4.9 3.1 a
10 5.4 3.7 a
11 1.4 0.2 b
12 1.3 0.2 b
13 1.5 0.2 b
14 1.4 0.2 b
15 1.7 0.4 b
16 1.4 0.3 b
17 1.5 0.2 b
18 1.4 0.2 b
19 1.5 0.1 b
20 1.5 0.2 b



Classifying Machine II
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Classifying Machine III

Todo Modify example to make a 45o classifier



Ordinary Least Squares

Instance Data in Converted
1 0 0
2 25 15.5492
3 50 30.0684
4 100 62.1371

ŷ = β̂0 + β̂1x (4)

β̂1 =

N
i=1 xi(yi − ȳ)

N
i=1 xi(xi − x̄)

(5)

β̂0 = ȳ − β1x̄ (6)



Ordinary Least Squares

Instance Data in Converted
1 0 0
2 25 15.5492
3 50 30.0684
4 100 62.1371

β̂1 =

N
i=1 xi(yi − ȳ)

N
i=1 xi(xi − x̄)

(7)

β̂1 =
0(0 − 26.93) + 25(15.54 − 26.93) + 50(30.06 − 26.93) + 100(62.13 − 26.93)

0(0 − 43.75) + 25(25 − 43.75) + 50(50 − 43.75) + 100(100 − 43.75)
(8)

β1 =
3391.75

5468.75
= 0.6202 (9)



Ordinary Least Squares

β1 =
3391.75

5468.75
= 0.6202 (10)

β0 = 43.75− 0.6202(26.93) = −0.2037 (11)



Example: OLS III
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